2020. 10. 7. 20:41ㆍreading
www.sciencedirect.com/science/article/abs/pii/S0740624X16301253
Reference
- Twitter studies: impact of textual patterns on retweets
- Communication studies of persuasion
Variables (0,1로 태깅된 것 제외하고 모두 log scale로 사용)
1. dependent variable
- total signature counts
2. control variables
- # of signatures gathered during first 24 hours
- # of petitions started on same day
3. predictor variables
3.1. linguistic style variables
- extremity
- 특정 단어(e.g. much more) 나타나면 1, 아니면 0
- urgency
- 특정 단어(e.g. immediately) 나타나면 1, 아니면 0
- informativeness
- # of unique words가 평균 이상이면 1, 아니면 0
- repetition
- # of total words / # of unique words가 평균이 이상이면 1, 아니면 0
- request
- 특정 단어(e.g. spread, sign) 나타나면 1, 아니면 0
- sentiment
- stanford sentiment analyzer 기준으로 neutral 아니면 1, 아니면 0
- internet activity
- 인터넷 링크 첨부하면 1, 아니면 0
3.2. semantic variables
- NER variables
- Stanford CoreNLP NER tagger:# of names of persons, locations, organizations
- evaluation: F-measure
- topic variables
- MALLET topic model package: 15 topics
- evaluation: cross validation
Regression analyses
- hierarchical ordinary least squares(OLS)
- to determine the explanatory power of variables
Model 4: adjusted R-squared 32%
linguistic style variables
- Model 2: 모두 통계적으로 유의함
- sentiment, urgency: positively correlated
- internet activity, extremity, repetition: negatively correlated
- Model 3: sentiment만 통계적 유의성 잃음
- Model 4: extremity 빼고 모두 통계적 유의성 잃음
- suggest linguistic variables are interrelated
semantic variables
- NER 중 person만 통계적으로 유의함
- person: negatively correlated
- Topic
- popular topics: positively correlated
- unpopular topics: negatively correlated
'reading' 카테고리의 다른 글
Longformer: The Long-Document Transformer 논문 정리 (0) | 2020.10.07 |
---|---|
GPT 정리 (0) | 2020.10.07 |
BLEU and BLEURT: evaluation for text generation 정리 (0) | 2020.10.07 |
StructBERT: Incorporating Language Structures into Pretraining for Deep Language Understandin 논문 정리 (0) | 2020.10.07 |
데이터 읽기의 기술 (0) | 2019.12.20 |